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CANOPY REFLECTANCE M O D E L I N G  IN A TROPICAL WOODED GRASSLAND 

(Report prepared by Janet Franklin) 

F i n a l  Report, Year 1, NASA A w a r d  NAGW-788 

ABSTRACT 

We are using geometric/optical canopy reflectance modeling and spatial/spectral pattern 

recognition to  study the form and structure of savanna in West Africa. We are testing an  inverti- 

ble plant canopy reflectance model for its ability to  estimate the amount of woody vegetation 

from remotely sensed data  in areas of sparsely wooded grassland. 

Dry woodlands and wooded grasslands, commonly referred t o  as savannas, are important 

ecologically and economically in Africa, and cover approximately forty percent of the continent 

by some estimates. The Sahelian and Sudanian savanna make up  the important and sensitive 

transition zone between the tropical forests and the arid Saharan region. The  depletion of woody 

cover, which is used for fodder and fuel in these regions, has become a very severe problem for the 

people living there. We are using Landsat Thematic Mapper (TM) data  to stratify woodland and 

wooded grassland into areas of relatively homogeneous canopy cover, and then applying an inver- 

tible forest canopy reflectance model to  estimate directly the height and spacing of the trees in 

the stands. Because height and spacing are proportional to biomass in some cases, a successful 

* 

application of the segmentation/modeling techniques will allow direct estimation of tree biomass, 

as well as cover density, over significant areas of these valuable and sensitive ecosystems. 

The model is being tested in sites in two different bioclimatic zones in Mali, West Africa. 

will be used for testing the canopy model. Sudanian zone cropjwoodland test sites were located 

in the Region of Se'gou, Mali. 
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CANOPY REFLECTANCE MODELING IN A TROPICAL WOODED GRASSLAND 

(Report prepared b y  Janet Franklin) 

Final Report, Year 1, NASA Award NAGW-788 

1. INTRODUCTION 
About noon we saw at a distance the capital of Kaarta, situated in the middle of an 
open plain - the country for two miles around being cleared of wood by the great 
consumption of that  article for building and fuel ...[ February 11, 17961 (Park 1893) 

The need for accurate baseline data  on the type and condition of landcover for large areas 

of the earth has been recognized by many leading scientists (NASA 1983, Houghton e t  al. 1983, 

Woodwell 1984). Terrestrial biota greatly affect the climate, energy budget, hydrologic cycle and 

biogeochemistry of the Earth, and are in turn affected by these processes. Quantifying the effects 

of human impact on the biosphere requires a greatly improved understanding of the influence of 

human-induced changes in land cover (such as deforestation, “desertification,” and conversion of 

land t o  agricultural and urban uses) on the spatial and temporal dynamics of terrestrial vegeta- 

tion. This understanding may in turn help resource planners improve land use practices in areas 

where degradation of range and farmland and loss of fuelwood contributes to problems of hunger 

and disease. Global land-cover information is traditionally derived from small-scale vegetktion 

maps and FA0 statistics, and more recently from satellite imagery (Tucker et al. 1985, Justice e t  

al. 1985, Matthews 1983). These estimates vary considerably, due to lack of consistency between 

data  sources, particularly concerning classification and methodology (Ajtay et al. 1979, Matthews 

1983). 

Degradation of arid and semi-arid ecosystems has accelerated in recent years due t o  

increased human use for fuel and food production, coupled with climatic fluctuation. Degradation 

is defined as a reduction in perennial phytomass and ecosystem productivity, elimination of woody 

cover, soil exposure, compaction, and erosion, and loss of stored nutrients and carbon (Dregne 

1983, Petrov 1976, Vinogradov 1980, Reining 1978, and Hare 1983). This has occurred in sub- 

Saharan Africa, particulariy the Sahel, in the  last two decades. Mungo Park‘s remarks about the 
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kingdom of S6gu (now Mali) in the quote that opens this introduction demonstrate that  deforesta- 

tion is not a new problem (Park 1893)) but  now, for the first time in history, drought and famine 

are the focus of international media attention. 

Several feedback mechanisms for prolonging droughts and accelerating land degradation 

have been proposed which involve land cover change. Because rain is primarily of convective ori- 

gin in the tropics and subtropics, the source of the water either being the ground itself or a neigh- 

boring ocean, once a drought begins, the vegetation dies, reducing evapotranspiration and convec- 

tive rainfall even further. Another feedback model states that  the loss of vegetation causes 

increased surface albedo, drastically changing the energy balance of the surface, resulting in 

further drying (Charney 1975). However, in many parts of the Sahel zone the surface albedo 

again decreased after the drought period in the early 1970's (Rasool e t  al. 1982), implying that a 

runaway process of perpetuating the drought through increased surface albedo did not occur. 

Changes in evapotranspiration may be a more significant factor in perpetuating droughts (Rasool 

1983). Therefore, changes in the amount of woody vegetation should be examined. 

In the development of remote sensing techniques for vegetation assessment, the spectral 

vegetation indices and transforms that have been applied successfully t o  estimate green vegetation 

amount in agricultural and grassland ecosystems do not work as well in forests and semi-hid 

woodlands, bush, and shrublands, because the bulk of the biomass is not green biomass bu t  in the 

woody structures. Absorption and shadowing by woody parts and the amount of bare soil visible 

has a complicated effect on greenness measures. Thus, i t  is important to  account for the ecosys- 

tem architecture. Further, the inform'ation classes in remotely sensed scenes of arborescent 

landscapes are composed of spectral mixtures of objects (such as trees, shrubs, grass, and soil) and 

form a mosaic at the scale of satellite sensor resolution. 

We are testing a geometric/optical canopy reflectance model which exploits the canopy 

geometry in an inversion technique to  predict tree size and density. This model is applied in a 

savanna ecosystem, an ecosystem of great importance in terms of global ecology and human utili- 

zation. 

-2- 



Final Report, Year 1, NASA Award NAGW-788 

2. BACKGROUND 

The main methods used for measuring vegetation amount, form, and structure from 

remotely sensed data are (1) spectral pattern recognition, including clustering, classification and 

labeling (Franklin e t  al. 1986), and (2) establishing correlative relationships between vegetation 

characteristics and satellite reflectance data. In spectral pattern recognition and image 

classification (Haralick and Fu 1983), cover classes are identified, and vegetation characteristics 

are associated with the classes through stratified sampling and measurement. Inference of vegeta- 

tion parameters (biomass, chlorophyll absorption, moisture content, color and spectral signature) 

from remotely sensed data  is discussed by Jensen (1983) and Curran (1980). In brief, the estima- 

tion of such parameters by correlation with band ratios and/or linear transforms usually relies on 

the contrast between the visible absorption and infrared reflectance of green vegetation. Woody 

vegetation amount (tree or shrub cover), where vegetation cover is incomplete (particularly in 

semi-arid and arid environments) is more strongly related to  spectral brightness than any other 

spectral transform (Colwell 1981, Olsson 1984 and 1985, Logan and Strahler 1982, Pech e t  al. 

1986). This effect has been modeled by Otterman (1984 and 1985). 

Another method of inference in remote sensing is proportion estimation, treating the 

reflectance of a pixel as a linear composite of the reflectance of scene components weighteil by 

their relative area within the pixel. This method has been used t o  estimate vegetation amount in 

canopies with incomplete cover (Richardson e t  al. 1975, Jackson et ai. 1979, Heimes and Smith 

1977, Graetz and Gentle 1982, Pech et  al. 198G). 

2.1. Plant Canopy Reflectance Modeling 

In contrast to pattern recognition, where scene elements are mapped into information classes 

based on their radiance measures, or spectral indices, where a biophysical parameter is related 

empirically to  (transformed) spectral data, in reflectance modeling reflectance is predicted as a 

function of the physical and optical properties of the scene elements. Plant canopy reflectance 

modeling will be defined as one way of treating mathematically the' interaction of electromagnetic 
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radiation with “scene elements”, where the scene element is a leaf (sub-element) or canopy 

(aggregate). The approaches used are radiative transfer theory in the visible and near-infrared 

wavelengths and the the energy balance equation in the thermal regime. The goal in plant 

canopy modeling is t o  predict the optical reflectance or emission as a function of intrinsic biophy- 

sical properties of the scene elements. If the canopy model can be inverted, then canopy charac- 

teristics can be inferred from measured reflectance. 

Strahler e t  al. (1986) and Smith (1983) review canopy modeling from a remote sensing 

viewpoint; the plant stand is being viewed by a sensor measuring electromagnetic radiation, and 

the signal received at the sensor is a function of the intrinsic properties of the target (the plant 

stand) and the other elements in the scene (such as atmosphere, soil, shadowing as a function of 

sun-sensor-surface geometry, and stand density and homogeneity). The problem in reflectance 

modeling is separating reflectance due to intrinsic properties of the plant stand from extrinsic pro- 

perties due t o  varying irradiance, or atmosphere. 

Smith (1983, p. 87) states: 

[Blecause of the large random component in radiation modeling, tractable models will 
include a statistical component . . . . When significant spatial variation occurs in the 
horizontal direction such that  plane-parallel approximations to the scattering and 
emmissive terrain elements are no longer valid . . . the three-dimensional structure af 
terrain elements becomes important and leads to  the casting of distinct shadows 
resulting from the macrostructure and morphology of the elements. For vegetation 
targets a merging of radiative transfer theory and geometric optics is evident. 

The model that  we will apply treats the stand statistically as a population of individual plants, 

and uses geometric optics to predict the shadowing from the plant canopy. 

2.2. Inve r s ion  of Canopy Mode l s  

Canopy models can use two sources of information for inversion; angular variation in 

response (directional reflectance), and covariance statistics of estimated mixtures across pis& 

(Smith 1983). Goel e t  al. (1984), Goel and Thomas (1984a and b) and Goel and Strebel (1983) 

show how numerical nonlinear optimization techniques can be used to invert the Suits (1972) or 

SAILS (Verhoef and Bunnick 197G) type model t o  obtain leaf area from directional reflectance 
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measurements if the other parameters of the model are known (solar and viewing zenith, azimuth 

between solar and viewing direction, leaf inclination distribution, leaf hemispherical reflectance 

and transmittance, soil hemispherical reflectance, and fraction of incident diffused light). Goel 

and Deering (1985) do the same thing but predict five of the model parameters through inversion, 

holding only soil hemispherical reflectance and skylight constant. The success of inversion is lim- 

ited by how well the model actually predicts reflectance for a given canopy (runs in the forward 

direction). In the papers cited above the inversion underestimates leaf area in the infrared 

wavelengths (the model overestimates reflectance) at low sun angle and for sparse canopies, 

because the model doesn’t account for shadowing. 

Inversion of these models in a remote sensing situation may not be practical because one 

either has t o  measure complete hemispherical reflectance (not very practical even from a multi- 

look angle sensor because of the number of measurements needed), or estimate spectral parame- 

ters, which are dependent on cover type and soil background (even among agricultural types), and 

diffuse light, which depends on atmospheric conditions. This technique couldn’t be used unless 

the cover type and estimations of these parameters were already known, but  could be useful in an 

agricultural monitoring scenario (Jackson 1984). 

The plane-parallel models have been important in understanding radiative transfer ih vege- 

tation canopies, especially in describing the bidirectional reflectance distribution function (BRDF) 

of the canopy given certain properties of leaf area, angle and azimuth distribution, leaf and soil 

BRDF, and so forth. However, these models do not account for variation in reflectance as a func- 

tion of spatially heterogeneous vegetation cover. If prediction of scene properties is the goal, 

these models do not adequately bridge the gap t o  the pattern recognition (indirect inference) tech- 

niques. The models which employ geometric optics better describe actual canopies, both agricul- 

tural and natural, because they incorporate canopy geometry and treat  biological populations sta- 

tistically. 

The geometric-optical models use the second information source, covariance statistics of 

estimated mixtures across pixeis, for inversion. This is more practical in a satellite remote sensing 
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situation, but  still there are several scene and canopy parameters t ha t  must be measured or 

estimated. 

2.3. Li-Strahler Canopy Models 

Li and Strahler (1985; see also Li 1981, Li 1983) developed a family of invertible, determinis- 

tic canopy reflectance models for sparse pine forest (i. e., forest with a discontinuous canopy). 

These models are invertible because parameters of tree size and density can be directly calculated 

from remotely sensed reflectance values, given appropriate ground calibration. The models are 

essentially geometric in character, treating trees as solid objects on a contrasting background, and 

estimates the proportion of each pixel in green canopy, shadow, and understory. Using the simple 

model, Li and Strahler estimated height and density parameters t o  within ten percent of values 

obtained from air photos for pine stands in northern California, U.S.A. We have extend this sim- 

ple model t o  fit the savannah environment. The reflectance of a pixel is modeled as a linear com- 

bination of scene components weighted by relative areas. Pixels from an  area of homogeneous 

tree cover can be taken as replicate measurements of reflectance. Interpixel variance in 

reflectance comes from three sources: 

- 

- 
- 

variations in the number of trees among pixels 
variation in tree size within and between pixels 
chance overlap of crown and shadow within a pixel. 

The assumptions of the simple model, modified t o  fit the savannah tree form, are: 

(1) 

(2) 
(3) 

(4) 

(5) 

tree shape can be approximated by a simple shape, a hemisphere on a stick, or some other 
form (see Figure l), 
tree shape is uniform (independent of size), and size and density are uncorrelated, 
the crown, although hemispherical in shape, can be modeled as a flat Lambertian reflector 
which absorbs visible wavelengths differentially (i.e., is green), and casts a shadow, 
tree size (expressed as squared crown radius) is lognormally distributed with a fixed mean 
and variance and a known coefficient of variation (standard deviation divided by the mean), 
spatial pattern (distribution of the number of trees per pixel) can be described by a distribu- 
tion function (e.g. Poisson, double Poisson) so that, again, even if the mean density is not 
known, the CV is (or the CD, coefficient of determination, variance divided by mean), 
the ground surface underlying the tree canopy (e. g., understory) has a signature which is 
distinctly different from that  of tree crowns and shadow, and 

(6) 
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(7) illumination is from a point source at infinite distance and at a known angle from the  zen- 
ith. 

The  sensor model associated with the simple canopy model is based on the following 

assumptions: 

(1) 

(2) 
(3) 

the output of the sensor is a digital image, consisting of brightness values averaged over the 
spatial extent of each grid cell, 
the sensor is multi-spectral, and 
the sensor is sufficiently for from the ground that view angle can be considered vertical and 
uniform over the imaged area. 

The simple model can be thought of as including two steps. First is “proportion estima- 

tion,” or calculating the proportions of understory, illuminated crown area, and shadow in each 

pixel. Because these proportions are a direct function of the number and size of trees that  appear 

in a pixel (providing that  neither the crowns intersect nor shadows overlap), they can be used to  

calculate a dimensionless parameter, NR2, for the stand, where R 2  is the square of the average 

cone radius and N is the density of cones per unit area. The second step requires calculating the 

mean and variance of NR2 values for all pixels within a stand, and using these values to  estimate 

the mean size and spacing parameters for lognormal and Poisson models. Because inversion of the 

model to obtain tree height and spacing requires calculation of interpixel variance, a homogeneous 

timber stand of certain minimal area (perhaps twenty pixels) is needed. This version of the Li- 

Strahler model is referred to  as the “simple variance-dependent model.” . 
The accuracy of the simple variance-dependent model is limited by the overlapping of 

crowns and shadows, which becomes significant when canopy cover reaches a level of about thirty 

to forty percent, depending on the shape of the trees and their angle of illumination. A subse- 

quent Li-Strahler model, the modified’overlapping model, accounts for overlapping of shadows 

and intersection of crowns as density increases and trees are spaced increasingly close to each 

other, and can be inverted accurately for stands of up t o  75% or greater crown closure, if the 

trees are not too small (Li and Strahler 1985). 

-7- 
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2.3.1. Geometry of the Model 

Figure 1 shows the geometry of a hemisphere on a stick illuminated at angle 8. The radius 

of the hemisphere is r , and h is the height to the base of the crown. Let r 2  be the square of the 

crown radius. Let 7 = tan-'(h / T  ). The illuminated crown, shadowed crown and shadowed 

ground projected to  the sensor will have areas: 

A 0  Crown: -r-(I + cod)  
2 

7 r 0  Shadowed Crown: --r-(l - cosq 
2 

If h tanO>2r 

Shadowed Background: 

A 2  1 - r  (1 + -) (large sun angle or tall narrow trees) 
2 case 

or if h tan8<2r 

Shadowed Background: 

'IT 1 -r2(1 + -) - 2r2( t  - % sin2t ) (small sun angle or short wide trees) 
2 case 

* 
h tan8 cos-ltane where t = cos-'- = 

2r  2tanr  * 

In the original formulation, Li (1981) treated shadowed crown and background as one component, 

with a single signature, and the area calculated from tree geometry. 

n 

i =1 
We will define I' as the geometric factor, such that  r ri is the area of the pixel covered 

by tree and shadow. Therefore, 
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2.3.2. Variables and Notation 

Variables Associated with Tree Crowns: 

Radius of crown as hemisphere, lognormally distributed. 
Height t o  base of crown, lognormally distributed. Crown height, H = r + h . 
Coefficient of variation of crown radius. 

Variables Associated with a Piltel: 

Pixel size. Usually taken as having a unit area. 
Number of trees in a pixel, distributed as a Poisson; independent of other variables. 

Average of squared crown radii within the pixel, i.e., R 2=- 

Dimensionless. Ratio of sum of squared crown radii to area of pixel, which is 

1 "  r 2i . 

Note that  m is a dimensionless parameter reflecting both the size and density of trees and 

m a is the proportion of crown closure in the stand. The larger m , the larger or denser the trees. 

This is scaled by the geometric factor, r, to get the proportion of pixel in canopy, shadow and 

background. 

3) 
N 

D, 

Variables Associated with the Woodland Stand: 
Mean of n for all pixels. For the random model, this is the value of the Poisson parame- 
ter. 
Dispersion coefficient (variance-to-mean ratio) of n . Tha t  is, D, = V ( n  ) / N  . If n is 
distributed as a Poisson function, D, zl. If not, D, will depend on the pixel size, A . 
For the clumped or patchy distributions that characterize large quadrats in natural 
forests, D, will increase with A . 

E ( r  ) Population mean of r . 
V ( r  ) Population variance of r . V ( r  ) = C, 2(E '( r ))2 , 

E ( r 2 )  Population mean of r 2  . 
V ( r 2 )  Population variance of r 2  . 
CR 2 Coefficient of variation of squared crown radius for the stand. 

If r is lognormally distributed, then r 2  is also lognormally distributed. We can then show from 

-. the definitions of E and V that  

E ( r 2 )  = (l+C,2)E(r)2,  
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and 

V ( r 2 )  = w [ ~ ( r ~ ) ] ~  , 

where 

R2 
R 
V ( R 2 )  Variance of R2.  

If n is a constant and r is randomly distributed in the spatial domain, then R2 x E ( r  2). Also, 

R 2  is a sample mean, and thus V ( R 2 )  = V ( r 2 ) / n .  

Mean value of R 2  for all pixels. i.e., E ( R 2 )  . 
The square root of R2 , Le., m. 

M 
V(m ) Variance of rn . 

Mean of m for all pixels in the stand. 

2.3.3. Reflectance of an Individual Pixel 

As stated above, we model the reflectance of the pixel as an area-weighted sum of the 

reflectances of the four spectral scene components. 

Areas and Proportions: Next are variables describing areas or proportions for scene ;om- 

ponents. 

Area of illuminated background within the pixel. 
Area of illuminated crown within a pixel. 
Area of shadowed background within a pixel. 
Area of shadowed crown within a pixel. 
=Aa / A  Proportion of pixel not covered by crown or shadow. 
=A, / ( A  -Aa ) Proportion of area covered by crown and shadow that  is in illuminated 
crown. 

=At / ( A  -Aa ) Proportion of covered area in shadowed crown. 
=A, / ( A  -Aa ) Proportion of covered area in shadowed background. 

From the tree geometry described above, we can show that 

A A, = m -(1+ c o d )  
2 

-%- 
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A At = m -(1 -cos0) 
2 

A 1 A, = m -(1 + -) if h tan0 < 2R 
2 case 

or 

1 A, = m  E ( l + - 0 ) - 2 r 2 ( t - M  s i n 2 t )  if h t a n 0 > 2 R .  
2 cos 

A, + At + A,  = 171 r 

and 

A, = 1 - m r  

2) 

G 
C 
z 
T 
S 

Reflectance Vectors: These are average single channel reflectances or multispectral 

reflectance vectors. 

Reflectance vector for a unit area of illuminated background (constant). 
Reflectance of a unit area of illuminated crown (constant). 
Reflectance of a unit area of shadowed background (constant). 
Reflectance of a unit area of shadowed crown (constant). 
Reflectance of a pixel. Variable; depends on number and size of trees in pixel. 

* 

V ( S  1 

The signature of pixel i in band j (for single channel, drop the subscript j )  is 

Sij =(Gj . A g  + Cj * A ,  + Z j  * A ,  + Tj * A t ) / A  

3) Geometric Relationships: From the geometry of the hemisphere, we have the fc 

tions if the pixel is taken to have a unit area: 

i 
( A - A g ) = C r i 2 1 ' = A m I '  

( A  -Ag ) = A, +At +A, 

Kg = 1- m r 

lowing re 
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Since K, , K, , and IC, sum to one, the expression (IC, *C  + K, .Z + Kt * T  ) represents a point in 

multispectral space lying within a triangle with vertices at C , 2 ,  and T (see Figure 2). This 

point is Xo ; the average reflectance of a tree and its associated shadow. The only variable in the 

right side of (2) is thus K, , which is a linear function of m . When m varies, S will vary along a 

straight line connecting points G and X o .  

Note that as overlapping of trees and shadows occurs, the background is obscured and sha- 

dows falling on other crowns will be foreshortened. Therefore, the reflectance of a pixel that  is all 

tree and shadow, X,, will lie on line TC , its position depending on tree geometry and sun angle. 
. 

Substituting the geometric expressions above for K, , K, , and Kt into (2) yields 

S = (G-Gm r)+Xom r . 

Rearranging, we have 

mr(G-Xo)  = ( G - S )  

In the last expression, G -S and G -Xo are vector differences; however, G -S lies on the line 

G -X ,  and therefore the equation is actually scalar. Using the notation 1GS to indicate the 

(3) 

length of the vector connecting G and S , we have 

-%- 
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If there were no error in the signal, the m value determined in any band would be the same, but  

noise will be present in S , a, and the component signatures. Two averaging procedures can be 

used; the weighted average of m values for all bands, or the weighted average of the final esti- 

mates of height and spacing. In the single band case, the outliers will inflate the variance more, 

making the trees appear bigger. 

The sensitivity of this model to  noise in S and the component signatures, and t o  errors in 

estimation of parameters can be shown by taking the partial derivative of m with respect to  

these variables. Rearranging and expanding (3) we get 

and from this, 

din  1 
as r ( G  - X o )  
-= 

(because when cover is low, S x G )  

-- dm - S - G  x m  
d r  r2(G - X o )  r 

Because (G  - Xo) is in the denominator, when the spectral contract between background and tree 

is high, sensitivity t o  noise in S , G and X o  will be reduced. When density is low (m is small), 

noise or error in estimating X o  and r are less important than the contrast between tree and back- 

ground (G - X0) ,  because m is in the numerator. 

-13- 
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2.3.4. Inverting the Model using the Variance of m 

Assume that a woodland stand consists of I( pixels, i =1, . . . , I C .  From (2), we can 

obtain a value of m for each pixel. Then, the values of tn will have a mean and a variance 

within the timber stand: 

Let us now assume that  height (and thus r ) is independent of density. Thus, expressions for the 

mean and variance of independent products will apply: 

M = E(nR2)  = E ( n )  * E ( r 2 )  = N R 2 ,  

and 

V(m) = V ( n R 2 )  = (R2)2 V ( n  ) + N 2 V ( R 2 )  + V ( n  ) V ( R 2 )  . 

Because n is a Poisson function, 

Further, 

V ( n )  = N . 

V ( R 2 )  = V ( r 2 ) / n  V ( r 2 ) / N  = w ( E ( ~ ' ) ) ~ / N  . 

Substituting (12) and (13) into (11), we finally obtain: 

V ( m )  M ( N  + CR 2N + CR 2)(R2)2 = ( M  + CR 2M + CR 2R2)R2. (14) 

In order t o  derive (14), R2 and V ( R 2 ) ,  which are parametric terms, are approximated using the 

sample mean and variance of r 2 .  Small errors are introduced by these approximations, but  they 

-14- 
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(15) 

may be ignored for our purposes. Solving (14) for R2, we obtain: 

R 2 =  [( 1 + CR 2)2 M 2  + 4V(??Z )CR 21% - (1 + CR 2)M 
2CR 2 

Thus, given sample estimates of the mean and variance of M determined from the 

reflectances of pixels in the stand, we can solve for R2, and then for N ,  yielding the average size 

and density of trees in the stand. The assumption underlying the use of the sample variance of r 2  

as V ( R 2 )  is that  each pixel is an independent sample of values of r 2 .  Other approximations can 

be also applied to  (11). For example, if the interpisel variation of r 2  is more significant than 

intrapisel variation, we may use V ( R 2 )  directly as an approximation of V ( r 2 ) .  Then (14) 

becomes: 

V ( m )  = (1 t CR 2)MR2 + CR 2M2 

and we obtain: 

R2 V ( m )  - CR2M2 
(1 + CR2)M * 

Also, if the dispersion coefficient of n is significantly different from 1, we may use V(n )7ND,, . 

Then (15) becomes: 

((On + C R 2 ) 2 M 2 + 4 V ( m )  CR2Dn)'-(D,, + CR2)M 
R2 2CR 2 0 ,  (17) 

The choices basically depend upon what a' priori information we have (Li and Strahler 1985). 
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3. STUDYAREA 

3.1. The Savanna Biome 

The study is being conducted in the Sahelian and Sudanian zone savannas of West Africa. 

Dry woodlands and wooded savanna (with tree cover greater than 10%) are presently estimated to 

cover 488.4 million h a  or 22.2% of the continent of Africa, including 8.6 million ha in Mali (Lan- 

ley and Clement 1982). Savanna will be defined as the subtropical and tropical vegetation forma- 

tions where the grass stratum is continuous and important, occasionally interrupted by trees and 

shrubs (cover greater than 10% and less than SO%), where fire occurs, and where the growth is 

closely associated with alternating wet and dry seasons. The savanna forms the broad transition 

between closed tropical forest and open desertic steppes (Bourlidre and Hadley 1983). 

Because of the difficulties in estimating changes in savanna and dry woodland area using 

available monitoring techniques, the most authoritative study declines to estimate changes in 

these categories (Lanley and Clement 1982). However, the rate of conversion to  other vegetation 

types by clearing for agriculture, grazing, burning and fuelwood harvesting appears t o  be very 

high. For example, in Tanzania, miombo and other dry woodlands in populated areas are being 

harvested more rapidly than they can regenerate (Allen 1983). The  problem in drier savahna in 

the Sahel may be even more severe (Delwaulle 1973). 

The balance between woody and herbaceous plants, and the effects of various factors on this 

balance is one of the most interesting aspects of the dynamics of savanna ecosystems (Bourlidre 

and Hadley 1983, Lebrun 1955). Walker and Noy-Meir (1982) have proposed a model of savanna 

structure based on the idea of dynamic equilibrium, which assumes tha t  the strata compete for 

topsoil water, and an increase in tree leaf biomass must be balanced by a decrease in herbaceous 

biomass (shown empirically in the Sahel by Breman 1982). Although the strata are in competi- 

tion for soil moisture, the woody strata also create favorable microhabitat for herbaceous growth. 

The recovery of herbaceous vegetation after the 1972-73 drought in the Sahel was quicker where 

woody vegetation was present (Bernhardt-Reversat i977).  Walker and Noy-Meir conclude that 
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savanna is perturbed by climatic shifts, fire, grazing, and fuelwood consumption, which is 

reflected in the changes in relative proportions of grass and trees. However, theories on the 

mechanisms controlling savanna structure are hotly debated (Menaut 1983). The savanna struc- 

ture, particularly the proportion of woody cover, is an important indicator of environmental con- 

ditions. Our canopy model will provide a method for measuring woody cover over large areas. 

3.2. Savanna Vege ta t ion  of West Africa 

The  rainfall gradient is very steep in tropical and sub-tropical West Africa, about 1 mm/km 

latitude, and the rainy season is unimodal. The savanna bioclimatic regions are referred to as the 

Sahelian and Sudanian zones. This region is a vast plain, interrupted by some escarpments and 

massifs, bu t  mostly composed of eroded sedimentary material and Pleistocene fossil dune systems. 

The plain is often internally drained into small depressions, and throughout the region there is an 

impermeable (often ferricrete) layer at varying depth and of varying thickness. These features 

control the local distribution of vegetation. 

Sahel is an Arabic word meaning shoreline, and refers t o  the southern boundary of the 

Sahara desert. The Sahelian zone corresponds roughly to  the 200-400 mm annual precipitation 

zone, and is further subdivided into: 

Saharo-Sahelian transition 100-200 mm 

Sahel proper 200-400 mm 

Sudano-Sahelian transition 400-600 mm 

by Chevallier (1900), Aubre'ville (1949), Boudet (1975), Le Houerou (1980), Penning de Vries an 

Djiteye (1982), and Breman and de Wit (1983). The rainy season varies from 1.5 mos in the north 

t o  3.5 in the south, from 20 rain days to GO, and the mean annual precipitation coefficient of vari- 

ation ranges from 40 !% to 25% (Tucker e t  al. 1985). The vegetation of the Sahel ranges from an 

open a n n u d  grassland (Panicum turgidum, Cenchrus biflorus), with less than 10% woody cover 

dominated by spiny trees and shrubs (Acacia raddiana, Balanites aegyptica, Zizyphus 
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mauritanica), in the north to perennial grasses with 25% or more tree cover (including Combreta- 

ceae - Combretum, Terminalia) in the south. The northern limit of the Sahel is sometimes 

defined by the absence of the grass Cenchrus biflorus (“kram-kram”). Basal area ranges from 4- 

16 m2/ha for the tree layer (Rutherford 1982), and annual production by woody plants of leaves, 

stems and twigs is 80-300 kg/ha/yr (Le Houerou 1980). The latitudinal trend in density of woody 

cover is modulated by topographic position and soil type (affecting moisture availability). For 

example, Acacia nilotica and A. seyal are locally dominant and dense in low, flooded areas, 

Euphorbia balsamifera is dominant in the northern Sahel where the impermeable ferricrust is close 

to  the surface, and shallow gravelly slopes have a unique floristic association (the “Brousse 

tigr,”). 

Leaf biomass can be predicted from stem circumference, tree height, or crown diameter 

(R2 M .80-.96) (Cisse‘ 1980a and b, Bille 1980). In the Sahel, green leaf biomass of woody species, 

and crown closure were shown to be proportional to mean annual rainfall and inversely propor- 

tional to herb cover (Cisse‘ and Breman 1982). A study in the Sudan showed a strong correlation 

(R=.94) between woody biomass and crown diameter (Olson  1984). Since the canopy model 

predicts average crown size and density, this bodes well for using the model to  estimate biomass. 

Phenology of trees and grasses is highly variable, and dependent of species and morthologi- 

cal differences, the presence of deep soil water, and so forth. However, many woody plants in the 

Sahel leaf out at the end of the wet season, greening up as much as three months after the peak 

of herbaceous productivity (for example, Acacia senegal, Commiphora africana, Combretum 

micranthum, Euphorbia balsamifera, Guiera senegalensis and Zizyphus mauritiana; Poupon and 

Bille 1974). Other species have the opposite pattern, greening in the late dry season before the 

rains. 

The Sudanian zone is the region to the south of the Sahel, lying between about 11” and 13” 

N in West Africa, where the rainfall is 600 to 1000 mm, the rainy season lasts 4 t o  5 months, and 

there is permanent agriculture. The vegetation is a mosaic of open woodland savanna, up t o  

about 15 m tall, some closed woodland, and edaphic bush thickets And grasslands on fziricrete 
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and inundated soils. Dominant woody species include Vitellaria paradoxa, Acacia albida, Albizia 

chevallieri, Prosopis africana, Cassia seiberdana, Adansonia digitata and Parkia biglobosa. The 

northern limit of the Sudanian zone is marked by the disappearance of Vitillaria paradoxa (“kar- 

ite“’), and Adansonia digitata (baobab) (Schnell 1977). This zone has been cultivated for a long 

time, with areas near villages under permanent cultivation, and bush fallowing practiced in fields 

further away. The crop/woodland or “orchard bush” type of vegetation is formed when crops are 

grown under a woodland of useful trees which are preserved when the land is cleared (Nielsen 

1965). 

All of these characteristics (open tree canopy, herbaceous understory, simple basal area/- 

biomass relationship, woodland of continuously varying density, but  complex spatial mosaic of 

physiognomic types) indicate that the stratification approach and the Strahler-Li canopy model 

will be applicable to this area, and provide a method for assessing woodland structure, and detecb 

ing and quantifying woody cover. 

3.3. Sahelian Sites in Mali 

A study is being conducted in the Gourma area of Mali by the Centre International pour 

1’Elevage en Afrique (CIPEX; Pierre Hiernaux, Principal Investigator), in collaboration with the 

GIMMS (Global Inventory, Monitoring and Modeling System) Project at NASA/Goddard Space 

Flight Center. CE’EX has located thirty sites of one kilometer radius along a north-south tran- 

sect from near Douna in the south (14’ 40’ N, 1’ 35’ W, 500 mm annual ppt.), to Gourma- 

Rharous on the Niger River in the north (17’ 45’ N, 1’ 50‘ W, 250 mm annual ppt.). These 

sites were chosen to be of relatively homogeneous vegetation and substrate (according to tone and 

texture on air photos) over and area of at least one square kilometer, for an AVHRR study (Hier- 

naux and Justice 198G). 

In the first year we are testing the canopy model in CIPEA Sites 15 (near Gossi), 20 and 21 

(near Hombori - see Figure 3). Site 15 is located in an Acacia nilotica woodland (approximately 

thirty percent cover), with an understory of predominantly Echinochloa colonna on an alluvial 
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plain of poorly drained vertisols. Par t  o this stand can remain flooded throughout the dry season 

(Hiernaux et  ai. 1984). Site 20 is located in an Acacia seyal woodland (approximately fifty-seven 

percent cover), with forty-seven percent herbaceous cover (Echinochloa, Sporobolis helvolis, and 

Corchorus tridens), also on an alluvial plain of vertisols, that  is inundated during the rainy sea- 

son, but  more freely drained that  Site 15 (Hiernaux et  al. 1984). Site 21 is very similar to Site 20, 

with woody cover approximately fourty-four percent, predominantly Acacia se yal (personal obser- 

vation and P. Hiernaux 1985, unpublished data). 

3.4. Sudanian Sites in Mali 

The Sudanian test sites are in the Region of Se'gou, between Tamani and Konodimini 

(Go 50' W and Go 20' W) and the Niger River and Nango ( 1 3 O  25' N and 13' 10' N). This area 

is being used by R. Cole (Department of Geography, Michigan State University), in his study of 

the changes in land use practices in response to  the drought since the early 1970's. Rainfed crops 

are grown during the two to three month growing season under a canopy of useful trees which are 

preserved when the land is cleared for planting (predominantly Vitellaria paradoxa, Acacia albida, 

Adansonia digitata, Ficus sp., Tamarindus indica, and Parkia biglobosa). In November 1985 

measurements were taken at four sites in  the Region of Se'gou (Figure 4). Sites 1 and 2 are dom- 

inated by Vitellaria paradoxa, and are located southwest and east of Konodimini respectively, in 

the house fields (cultivated areas near the village where shrubs and weeds are cleared regularly). 

Sites 3 and 4 are dominated by Acacia albida, and are located in the house fields surrounding the 

villages of Massala and Dugufe'. Acacia albida has a characteristic distribution pattern in this 

area. Preserved near villages, it  dominates within a distance of 0.5 km of the village perimeter 

with crops grown beneath. Beyond that  distance, karite' dominates where there is cultivation. 
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3.5. Image and Col l a t e ra l  Data 

Thematic Mapper data  for the study areas have been acquired. Geometrically corrected P- 

Tapes were purchased from EOSAT. For the Gourma test sites a scene was chosen from the late 

part  of the growing season (9 September 1984). The scene is #5019209552, WRS Pa th  195, Row 

49 (Quadrant 3), which includes the sites from north of Gossi t o  south of Hombori (Sites 14 to  21 

and 31, see Figure 3). This date was chosen because it coincided with CIPEA field data  collec- 

tion. However, this scene is not optimal for discriminating trees from herbaceous understory, 

because there were several September rainfall events in 1984, and in this image the herbaceous 

vegetation is still green in the wetter sites (e.g., Site 15) and in some areas of the dunes. There- 

fore, a late dry season image (7 May 1985) has been acquired, to use for multi-date stratification, 

and for testing the canopy model in contrasting seasons. For the Region of Se‘gou, a post- 

harvest, early dry season image (17 November 1984) was acquired (Scene #5036110142, Pa th  198, 

Row 51). 

Topographic maps at several scales (1:200,000 and 1:1,000,000) were acquired for both the 

Gourma and Se‘gou sites. Black and white aerial photographs are available for the Republic of 

Mali at a scale of l:GO,OOO, but they date from 1956. These are the only small-scale photographs 

available in the Gourma area, and are required for image registration, location of study shes, 

strata labeling, and so forth. Therefore, partial coverage for the Gourma area was acquired. In 

the Region of Se‘gou, 1:50,000 black and white panchromatic photos from 1974 are available for 

part  of the region due t o  the presence of “Projet Riz” (an extensive irrigation project for rice 

growing) in this area. These photos have been purchased. Current (1985-1986) low-level color air 

photos (1:2500 to  1:5000 scale) for some of the study sites in both regions were made available to  

us by CIPEA. All of these maps and photo data sources are used for locating study sites, model 

parameterization (calculating tree spatial pattern and measuring density and cover for sample 

stands t o  be used in accuracy assessment), image registration (to help interpret from satellite 

imagery to  topographic maps) and strata labeling during the image stratification step. 
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4. METHODS 

4.1. Pattern Analysis  

The purpose of pattern analysis is to  to explore the temporal and spatial patterns of the 

imagery and the ground scene in order to guide the choice of stratification techniques. Recent 

work (Woodcock and Strahler 1983, Woodcock 19813) shows that  spatial pattern in multi-spectral 

scanner imagery is dependent on scale, and the spatial characteristics of the scene elements within 

a particular information class or cover type. Two-dimensional variograms will be calculated (see 

Woodcock 1986) for test areas of different known vegetation types in the image data. The 

expected result is a description of the spatial variance of tones in the images, which will indicate 

the relative scales of pattern, and provide a basis for choosing an appropriate texture measure, or 

describing the image context function, for possible use in the segmentation step. 

Many researchers have attempted to understand and describe the pattern of vegetation in 

the woodland/grassland/shrubland complex of west Africa and there is no simple deterministic 

model of the spatial and temporal distribution of vegetation in this or any area with a long and 

complex land use history. However, it may be possible to  include information about vegetation 

spatial pattern in the information extraction process, at least empirically. . 

4.2. Image St ra t i f ica t ion  

The  purpose of image stratification (or segmentation) is to  identify areas of woodland in the 

image, and stratify the area into woodland stands of some minimum area which are of relatively 

homogeneous density. This task has been successfully accomplished in prior research (Franklin et 

al. 1985, Strahler et al. 1983) by using MSS, image texture and digital terrain data, carrying out 

unsupervised classification, then subsequently performing spatial filtering to  produce spatially 

homogeneous stands. 

For the present study terrain data will not be used. I t  is not available, and would be margi- 

naiiy useful in this environment for discriminsting -vegetation types. We will use tw-date TM 
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imagery (one wet season and one dry season image), and possibly a texture image (Zhan 1986) as 

input to  unsupervised classification. Principal components images, either from each date, or both 

dates combined, could be used to reduce the number of data channels used in classification. We 

anticipate that  with two-date, well-registered images, the cover types can be discriminated spec- 

trally, possibly with the help of a texture measure. The classification will be evaluated using 

standard accuracy assessment procedures for thematic maps (Rosenfeld e t  al. 1982, Card 1982), 

and by the ability of the stratification to reduce variance in cover estimates or basal area within 

woodland strata. Note thdt in the Gourma study site, a vegetation stratification identifying soil- 

and woody cover classes can also be used by Hiernaux and Justice to improve biomass estimates 

using NDVI from aircraft radiometer or AVHRR data (Hiernaux et  al. 19%). 

4.3. Canopy Reflectance Modeling 

The tree cover in savanna wooded grassland is sufficiently sparse that  the overlapping of 

shadows and crowns should not  be a significant problem and the simple variance dependent model 

can be applied. The following assumptions were modified from those used in the simple Strahler- 

Li model: 

tree shape: A hemisphere on a stick model for tree shape is appropriate for Saheliafi and 

Sudanian savannas. Li and Strahler have extended the model for this shape (Figure 1). The 

ratio of height to crown diameter was established from test data.  

size distribution: Field measurement of size distribution are very important in the Sahelian 

and Sudanian zones where extensive measurements of these parameters do not exist. We 

measured size distribution in all of our field sites. 

spatial distribution: Our  earlier research (Strahler and Li 1981, Franklin 1983) has shown 

that  i t  is possible to estimate the spacing parameters of the model from medium-scale air 

photos. Spatial pattern was alos sampled from air photos for our Mali sites. 

component spectral signatures: Sensitivity analysis of the Li-Strahler model shows that  

the larger the difference between the Background and Tree-Shadow signatures, the stabler the 
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results. If a projection can be chosen in spectral space which maximizes spectral separability 

of the components, this will minimize error. Also, as each tree has a bigger impact (as the 

sun angle, and therefore the amount of shadow increases) the results are more stable. When 

trees are small or sparse, the above factors are more important than noise in the tree signa- 

ture, or in the shape parameter. This makes intuitive sense - when the amount of “tree- 

ness” in the pixel is low, the model is more sensitive to  variations in the background signal 

than the tree signal. 

Therefore, the natural variability of the tree population in terms of shape and 

spectral properties, will not cause significant errors on the model results, but variations in the 

background signature will. A band combination or projection in spectral space can be chosen 

which minimizes variations in background signature. 

(5) tree size and dens i ty  for test stands: In order t o  verify model results, tree size and den- 

sity were sampled in test stands. 

4.4. Field Data Collection 1985 

In the Gourma sites the CIPEA team has estimated woody cover by the line intercept 

method, and estimated tree height, circumference, and crown area for the trees intercepted by the 

one kilometer transect. We have received the tree cover and dimensional data  from CIPEA so 

that  the distribution of tree sizes can be established for the sites, and cover estimates can be used 

t o  verify model results. Also, in an earlier study (Cisse‘ 1980b) stratified (by diameter class) sam- 

ples of several dominant Sahelian woody plants were measured to establish the dimensional rela- 

tionships among height, stem diameter and crown diameter. These data  were used t o  establish 

the shape parameter ( h  /R ) for the model. 

In the Se‘gou region, four 50 to 60 m radius plots were located in each of the four sample 

stands. Diameter at breast height (dbh) of each tree, and height and shape parameters for a sub- 

sample of the trees (16 trees per plot) were measured. From these measurements the shape 

pwameter ar?d the size distribution fer t h e  stands were estimated. 
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4.5. Analysis of Aerial Photographs 

Using the low altitude CIPEA photographs of the training sites, we have mapped tree point 

pattern in two Gourma and two Se‘gou sites. In 280 x 280 m, 250 x 250 m or 140 x 140 m qua- 

drats 200 t o  900 trees per quadrat were located. Spatial pattern has been analyzed using quadrat 

analysis (Li and Strahler 1981; Franklin e t  al. 1985, from Grieg-Smith 1964 and Pielou 1977), and 

second order analysis of inter-tree distances (Franklin and Getis 1985, Getis and Franklin 1986). 

We have also sampled density and tree cover for the quadrats by the dot grid method (Warren 

and Dunford 1983), t o  assess the accuracy of the model. 

4.6. Image Processing 

Principal Components Images: Principal components images were produced for each subimage 

separately from six T M  spectral bands (not including the thermal channel because of the lower 

spatial resolution). Principal components images can be used as input to  image stratification and 

canopy model testing (see below). 

Image Stratification: The method used for image stratification is unsupervised clustering, 

classification, and cluster labeling. A small test area (256 x 256 pixels) was chosen in each subim- 

age, and classification and clustering were performed both on principal components (PC) :mages 

and Th4 spectral bands. Spectral classes were inspected to determine if Th4 or PC images better 

discriminated the land cover classes in these areas. 

Stand and Component Signatures: The mean and variance of the  reflectance in each spectral 

band were computed for the test sites (these make up the vector S). The spectral signatures of 

the model components must also be calculated. Background signature were assigned from train- 

ing sites. Tree plus associated shadow signature was estimated in two ways. For sites where 

there are cover measures in plots that can be located in the image, spectral brightness was 

regressed against cover, and extrapolate to  100 percent cover. For the other sites, unsupervised 

spectral clustering of the spectral data within the site was performed, assuming that  the “darkest” 

class has the cover density measure by CLPEA. The cespectral plot of red and near inirared 
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reflectance (or greenness and brightness) was inspected, and we assumed that brightness decreases 

and greenness increases linearly with cover. 

Testing the Model 

Model inversion was tested for single spectral bands. The parameters needed to  calculate to  

test the simple model are the component signatures, G and Xo, the shape parameter CY (= r / h  ), 

and CV((R2). The cosine of the solar zenith angle was calculated for each image based on the 

date and local time of the overpass, and the latitude and longitude of the scene center, using a 

program written by Jeff Dozier. The simple model was tested using programs written by Li 

Xi sow en . 
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5. RESULTS 

5.1. Tree Shape and Allometry 

The tree shape parameter for a hemisphere model, h / R  , the ratio of stem height to crown 

width), was calculated empirically from sample data  for each study site, and from other other stu- 

dies, for five tree species (Tables 1 and 2). In this study each of these species dominated in the 

sites where they were found, making up over 80% of the crown cover. The shape parameter 

varies from 0.5 t o  1.7, with most values falling between 0.7 and 1.5. From this shape parameter 

and the sun angle at the time of the Landsat overpass, I' was calculated for input to  the simple 

model (Table 3). 

Table 4 shows the allometric relationships among crown radius (or diameter, or surface 

area), stem diameter (or circumference) and height. The R values for the stratified (by size 

class) samples (from Cisse' 1980 b) are improved over the values for the larger random samples 

(from Hiernaux et  al. 1984 and this study) but are more representative of the predictive power of 

these relationships. The stratified sample more closely approximates a Model I regression (see 

Sokal and Rohlf 1969), where the independent variable is under investigator control. 

. 
5.2. Tree Size Distribution 

Histograms of each of the sample populations were inspected to  determine the shape of the 

size distributions. Histograms of crown size, height and stem size were examined, and because of 

the intercorrelation of these measurements (see last section) the shape of the distributions were 

similar. A lognormal distribution of tree size describes most of the sample populations. The dis- 

tributions were right-skewed and a log transform of the data  produced a normal looking distribu- 

tion (Fig. 5). Therefore, a lognormal distribution can be accepted as describing the tree size dis- 

tribution, and if CR 2 is not known from field data it can be calculated from the formula for a 

lognormal distribution. In this study CRO was calculated from the field data  (Table 2). 
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5.3. S p a t i a l  Pattern 

Figure 6a shows the tree point locations for Gourma Site 20 as an example of the da t a  set 

used to  calculate spatial pattern. The results of second order analysis (Getis 1984, Franklin et al. 

1985 and Getis and Franklin 1986) for sample quadrats in the test sites are as follows: 

Gourma Si t e  20: (n = 895, 280 x 280 m quadrat) There is significant (at 1% level) inhibition 

(regular spacing) at 6 to  7 m distance, and significant (at 5% level) clumping at 30 to  100 m (Fig- 

ure 6b), but  the pattern looks very regular, and the clumping found by this method contradicts 

the results of the quadrat analysis (see below). 

Gourma Site  15: (n = 589, 280 x 280 m quadrat) There is significant (at 1% level) inhibition 

at less than 5 m distance, and significant (at 5% level) clumping at 20 m and 100 m. At 25 to  80 

m distance (satellite scanner resolution) the Poisson model (or Complete Spatial Randomness) is 

adequate (Fig. 7b). 

Se'gou Site 2: Subplot I :  ( n  = 222, 250 x 250 m quadrat) Inhibition t o  8 m, Poisson model ade- 

quate from 9 to 50 m, significant aggregation from 60 to  100 m (at 1% level). Subplot 2: 

(n = 228, 250 x 250 m quadrat) Inhibition to 8 m, Poisson model fits from 10 to  26 m and 36 to 

100 m, significant aggregation at 28 to 34 m (at 5% level) (Fig. 8). 

6 

Figure 7a shows the point locations for trees in Gourma Site 15 with a 30 m grid overlain, 

to illustrate how counts of trees would vary in Tlv-sized pixels. The results of variable sized qua- 

drat  analysis (Franklin et al. 1985) are shown in Table 5. Gourma Site 20 is fit by a Poisson 

model for quadrats of size 20 to 35 m, but not 40 m. This is partly a function of decreased sam- 

ple size. Gourma Site 15 is fit by a Poisson model for quadrats of size 20 t o  50 m, except that  

counts in 30 m quadrats differ significantly from Poisson. Se'gou Site 2 (Subplot 1) is fit by a 

Poisson model for quadrats of size 10 t o  GO m. 

O w  conc!usion from t.hese preliminary analyses of some of the sample sites is that  a random 

(Poisson) spatial model is adequate at  relevant sensor resolution of 20 to  50 m pixels. A t  coarser 

resolution, second order analysis shows the Poisson model to be adequate at distances of 50 to  100 

m in most cases, including the sparser stands (Se'gou Site 2) where our earlier studies show that  
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the Poisson model breaks down (Franklin et 01. 1985). 

5.4. Canopy Model 

Results from the first test of the simple model are shown and described in Appendix A, 

which contains a paper presented at the Twentieth International Symposium on Remote Sensing 

of Environment, Nairobi, Kenya, entitled: Canopy Reflectance Modeling in Sahelian and Sudanian 

Woodland and Savannah. 
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0. SUMMARY 

0.1. Anticipated Problems 

We have discussed the strengths of the canopy modeling approach, and explained why we 

think i t  will be successful. Now we would like t o  discuss its weaknesses, the problems we antici- 

pate, and how we will address them. 

(1) Characterization of component signatures may be a problem, particularly background signa- 

ture, which the model is sensative to, and which is highly variable in this region. Image 

stratification will help reduce this problem - background signature can be assigned empiri- 

cally within strata. In other words, there may be two strata of the same woodland density 

class, but with different background signatures. 

The highly variable phenology of the herbaceous (understory) and tree layer may make i t  

difficult t o  apply this model over large areas, or on a repetitive basis as a monitoring tech- 

nique. Greening up of grasses and leafing out of trees can occur locally (in time or space) in 

response t o  rainfall events. This is more of a problem in the Sahelian zone. Also in the 

Sahelian zone, although the leafing of trees lags behind greening of grasses for most species 

or vegetation types (trees remain green for at least part of the dry season) there is overlap, 

and particularly in the inundation zones where tree cover is densest, and signature discrimi- 

nation between trees and background may be difficult. This can be addressed in the second 

year when multi-date imagery can be used for signature definition, as well as stratification. 

Most of the Sahelian zone has extremely low woody cover. An important question will be 

what the lower density limits of the model are - when does the tree signal get lost in the 

noise of background variation? Trees can be identified of high resolution air photos at very 

low density (2-3%), but  can they in satellite imagery, using the model? And, how important 

is i t  to recognize densities this low? 

(2) 

(3) 

(4) Signature and parameter extension - How generalizable are the parameters of the model in 

this environment? Can the same shape, size distribution and pattern parameters for trees be 
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extrapolated to other stands in the same strata, and over how great a biogeographic range? 

A t  what spatial scale does an atmospheric variation affect the accuracy of the model? If the 

model parameters are very site-specific, then its inversion is theoretically interesting, but not 

very practically applicable. This will be addressed in the second year, when the model will 

be tested in new sites. 

8.2. Discussion 

By modifying and extending an invertible canopy reflectance model to tropical savanna, we 

anticipate the following results: 

(1) Through exploration of the reflectance model, an improved understanding of the interaction 

between land surface, radiation, and sensor, particularly the effects of scale-dependent pat- 

terns and architecture of the objects in the scene. 

(2) Through application of the model using Landsat imagery, an improved ability to  extract 

information on biophysical parameters of the land from remotely sensed data. 

(4) Through field measurements required for modeling, cooperation with ongoing intensive field 

investigations, and by applying remotely sensed data as an  additional measurement tool, an 

improved understanding of the structure, distribution and dynamics of the savanna ecosys- 

tem. 

. 

This last point has implications a t  both regional and global scales. An increase in the fundamen- 

tal knowledge of the factors underlying vegetation distribution will provide basic input for plan- 

ning at a regional level in an area that is under extreme human population pressure. Also this 

study will provide information presently lacking on the temporal and spatial dynamics of savanna 

ecosystems for input into global ecological and climatological models. We anticipate that  through 

functionally relating physiognomic and physiographic pattern on the landscape to image spatial 

and temporal pattern, a previously underexploited layer of data  can be added to the process of 

information extraction from multiresolution, multitemporal, and multispectral remotely sensed 

data. 
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(Niono) A. nilotica 30 
15 A. nilotica 71 
15 A. nilotica 75 

(Niono) A.  seyal 45 
20 A. seyal 114 
21 A. seyal 125 

Niono B. aegyptica 20 
3, 4 A. albida G2 
1, 2 K paradoza 65 

8.9' (4.3) 4.9 (1.8) 1.g3 (1.6) 11. 
10.4l (5.7) 5.2 (1.4) 3.03 (2.4) I. 
10.4' (5.7) 5.3 (1 -4) 3.53 (3.4) I. 
14.5' (8.1) 4.6 (2.0) 11. 
8.5' (1.9) 5.2 (0.9) 2.83 (2.0) I. 
4.9l (2.8) 2.i3 (1.8) III. 

8.5" (4.8) 2.7 (1.0) 1.0~ (1.2) I. 
21.32 (7.3) 12.2 (2.8) 4.8" (1.7) rv. 
14.22 (5.8) 7.7 (2.2) 3.74 (1.1) N. 

Notes: 
Stem Size: 1 - basal circumference 

2 - diameter at breast height 
a - from a different population 
3 - from estimate of crown surface area 
4 - crown diameter measured 

11. Cisse' 1980b 
III. Hiernaux 1985, unpublished data  
IV. this study 

Crown Radius: 

Source: I. Hiernaux et al. 1984 

I TABLE 2 I 
Site Species n h h l R  R 2  oR2 C R 2  

Niono A. nilotica 30 3.0 1.58 3.8 2.6 0.47 
15 A. nilotica 71 2.2 0.73 11.9 15.0 1.59 
15 A. nilotica 75 1.8 0.50 11.9 15.0 1.59 

. 

20 A. seyal 114 2.4 0.86 7.6 3.8 0.25 
21 A. seyal 125 4.5 3.3 0.53 

Niono B. aegyptica 20 1.7' 1.70 1.1 1.4 1.62 
3. 4 A. albida 62 7.42 1.54 24.8 17.3 0.49 

1 1, 2 K paradoza 65 4.03 1.10 15.2 9.5 0.39 I 
Notes: 
h 
shape (H - R ) 
R 2  
CR 2 is the coefficient or" variation of R = V(R ')/{2 2)2. 

1 - height t o  lowest branched measured, = 0.5 m 
2 - height t o  widest part of crown measured, = 8.7 (1.9) m. 
3 - height to  widest part of crown measured, = 5.1 (1.4) m. 

(height t o  bottom of canopy) calculated for idealized semisphere 

is the average squared crown radius 
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TABLE 3 

hlR 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
1 .oo 
1.05 
1.10 
1.15 
1.20 
1.25 
1.30 
1.35 
1.40 
1.45 
1.50 
1.55 
1.60 
1.65 
1.70 
1.75 

Gourma 
e = 38.7 

r 
4.37 
4.45 
4.53 
4.61 
4.69 
4.76 
4.84 
4.91 
4.99 
5.06 
5.14 
5.21 
5.28 
5.35 
5.42 
5.49 
5.56 
5.63 
5.70 
5.76 
5.83 
5.89 
5.95 
6.01 
6.07 
6.13 

Segou 
e = 50.8 

r 
5.26 
5.37 
5.49 
5.60 
5.71 
5.82 
5.93 
6.04 
6.14 
6.24 
6.34 
6.44 
6.53 
6.62 
6.70 
6.78 
6.86 
6.93 
7 .OO 
7.06 
7.11 
7.15 
7.18 
7.19 
7.19 
7.19 

. 
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TABLE 4 
Relationships Among Tree Measurements 

Site Svecies n Regression Eauation R2 
Predict Crown Size (R or S or CW) from Stem Size (DBH or C) 

** A. nilot ica 30 logs  = 1.13 IOgC - 1.34 .88 
15 A. nilot ica 75 logs = 1.12 lOgC - 0.05 .59 
20 A. seya l  114 logs = 0.81 logC + 0.15 .54 
21 A. seya l  125 logs = 1.24 l o g c  - 0.09 .73 

3854 A. albida 62 CW = 0.35 DBH + 2.20 .59 
1852 V. paradoza  65 CW = 0.4 DBH + 1.33 .58 

Predict Crown Size (R or S or CW) from Height (H) 
** A. nilot ica 30 logH = 0.49 logs + 0.41 .65 
15 A. nilot ica 75 logH = 0.23 logs + 0.88 .43 
20 A. seya l  114 logs = 2.07 logs - 0.35 .47 
** B. aegypt ica 20 S 3.9 H - 7.15 .80 

3854 A. albida 62 H = 0.63 GW + 6.16 .55 
1&2 V. paradoza  65 H = 0.53 CW + 4.0 .37 

Predict Heinht (H) from Stem Size (DBH or C’l 
** A. nilot ica 30 logH = 0.64 lOgC - 0.53 -77 
15 A. nilot ica 75 logH = 0.34 l og0  + 0.51 .43 
20 A. seya l  114 logH = 0.7 logC - 1.13 .96 
21 A. seya l  125 logH = 0.24 logC + 0.89 .42 
** B. aegypt ica 20 logH = 0.46 logC - 0.49 .71 

3&4 A. albida 62 H = 0.33 DBH + 5.5 .51 
1&2 V. uaradoza  65 H = 0.31 DBH + 3.71 .70 

** data  from Cissd 1980. (Data for sites 15 and 20 from 
Hiernaux e t  al. 1984.) 

. 
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TABLE 6 
Quadrat Analysis: Fit to Poisson Distribution 
Quadrat n n 

Size quadrats points mean x2 df 

10 784 587 0.7 4.7 3 
20 196 587 3 .O 4.7 9 
25 121 5G7 4.7 8.0 12 
30 81 547 6.8 34.1* 13 
35 64 587 9.2 9.1 18 
40 49 587 12.0 20.9 24 
50 25 46'3 18.6 10 27 

Gourma Site 15 (A. nilotica ) 

Gourma Site 20 (A. seyal  ) 
20 182 838 4.6 10.0 10 
25 1 2 1  877 7.2 24.8 18 
30 81 850 10.5 25.9 19 
35 56 780 13.9 15 28 
40 42 757 18.0 51* 30 

10 625 223 0.36 3.1 0 
20 144 212 1.47 0.3 4 
30 64 213 3.3 3.9 7 
40 36 213 5.9 5.8 14 
50 25 223 8.9 6.4 17 
60 l G  213 13.1 11.3 26 

Segou Site 2 (subplot 1) (V. paradoxa ) 

* significantly different at .05 level 

. 
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TABLE 6 
Actual Tree Size and Density for Test Sites 
Site Percent Density 

Cover k e a  (ha) (trees/ha) R2(*) 

Gourma 15: field 31.0 (1 km) I photo 22.6 9.80 
photo 2G.5 7.84 75.1 11.2 

Gourma 20: field 59.4 (1 km) 
photo 38.8 9.80 
photo 35.0 7.84 114.2 9.75 

Segou 1: field 13.0 4 .5P 27.6 16.26 
Segou 2: field 18.9 3.48’ 46.4 13.84 

photo 2G.8 25.00 41.4 30.63 
Segou 3: field 21.2 3.14l 39.8 16.95 
Segou 4: field 14.5 4.52l 15.2 30.23 

Notes: 
* - Calculated from cover area divided by number of trees 

(see Table 2 for measured R2) 
1 - total area for four subplots 

. 

-41- 



I HEMISPHERES 

h 

I 
h tan6 > 2r h tan0 < 2 r  

.. . 

Figure 1. Geometric models for savanna tree shapes; 1) semisphere, 2) inverted cone, and 3) disk on a stick. 

-42- 



Brightness 

ponent signatures and diagrammatic coverage trajectory. 
Fig. 2. Idealized plot of brightness-greenness spectral space with com- 

. 
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Figure 3. Location of Gourma Study Area. 
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Figure 4. Location of Se'gou Study Area. 
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Figure 5. Histograms of size distributions for Acacia nilotica and Acacia albidn, The laantile-quantile (Q-Q) 
plots represent the data  plotted against corresponding quantiles of the normal distribution (units are 
standard deviations). If the points fall in a straight line, they are normally distributed. 
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Cree L o c a t i o n s  Gourma S i t e  20 n=895 O - - X -  1 --0 

Figure 6. a) Point locations of trees, Gourma Site 20. b) Cumulative frequency of observed interpoint dis- 
tances (Ai I d ] ) .  The diagonai is the expected frequency €or a Poisson distribution, and the lines sur- 
rounding i t  are the .05 significance level. 
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. 

Figure 7. a) Point locations of trees, Gourma Site 15 with grid of 30 m quadrats overlain. b) Cumulative fre- 
quency of observed iiitei-point distsiices (Li [ d  1). The diagonal is the expected frequency for a Fois- 
son distribution, and the lines surrounding i t  are the .05 significance level. 

-48- 



. I  . 
1 .  

.. 

i 

. .  . .  . -  . .  . .  . .  , .  . .  
. .  . -  . . .  

. . -  . .  . .  
- .  - . .  . .  . .  

. .  
- . e . .  . .  . .  . . .  - .  

- .  . .  

. .  

. . .  
* .  . .  .. 

- . *  . .  . .  
I 1 .  I I 

ree Locat ions Segou S i t e  2 :Photo 2-3 nor t<n=288 

d Cm) 

. 

Figure 8. a) Point locations of trees, Se'gou Site 2 (subplot 2). bj Cumulative frequency of observed interpoint 
distances (L; ( d ] ) .  The diagonal is the expected frequency for a Poisson distribution, and the lines 
surrounding i t  are the .05 significance level. 
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ABSTRACT 
A geometric-optical canopy reflectance model, driven by Landsat Thematic Mapper (TM) data, 

provided direct estimates of tree cover within twenty percent of actual values for several sparse 
woodland stands in West Africa. This model exploits tree geometry in an inversion technique to 
predict average tree size and density from reflectance data using a few simple parameters measured 
in the field (spatial pattern, shape, and size distribution of trees). Trees are treated as simply shaped 
objects, and multi-spectral reflectance of a pixel is a function of the proportion of tree crown, sha- 
dow, and understory in the pixel. These proportions are a direct function of the number and size of 
trees, and given the variance in reflectance within a homogeneous area of woodland, the model can 
be inverted to give estimates of average tree size and density. The model was tested in two sites, in 
the Sahelian zone and five sites in the Sudanian zone, Mali. Tree density was consistently overes- 
timated, and tree size underestimated, but correlation between observed and predicted values was 
very good ( r  2> .85). After improving our method for selecting component spectral signatures (for 
tree and background) results improved dramatically for stand estimates of tree size and density. 

1. INTRODUCTION . 

A family of mathematical models of the reflectance of a plant canopy composed of discontinuous 
woody cover allows the direct estimation of plant size and density from remotely sensed reflectance 
data (Li and Strahler 1985). The models are geometric in character, treating trees (plants) as solid 
objects on a contrasting background, and estimating the proportion of each pixel in tree canopy, sha- 
dow, and background. In the simplest model, tree density is assumed to be low, and trees and sha- 
dows do not overlap enought to change the proportion of shadow in a pixel. Using this simple 
model, Li and Strahler (1985; Strahler and Li 1981) predicted tree size and density within ten percent 
of actual values for sparse pine forest in northern California from Landsat MSS data. 

We have extended this model and tested it using Landsat Thematic Mapper (TM) data in a new 
environment where the basic assumptions of the model hold, but the parameters must be modified. 
I lie model was tested in spawe wm,d!afid s:?d r..~cded grzssland in the Szhe!izn Z I ? ~  SGdanian 
bioclimatic zones in West Africa. Dry woodlands and wooded grasslands are important ecologically 
and economically in Africa, and cover forty percent of the continent by some estimates. The deple- 
tion of woody cover due to changes in land use practices, coupled with increasing population and 

mr 

'Presented at the Twentieth International Symposium on Remote Sensing of Environment, Nairobi, Kenya, 4-10 December 
IC186 
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drought, is a severe problem for people living in these areas where trees are used for fuel and fodder. 

sity of woody plants over large areas. Because size and spacing are often related to leaf and woody 
biomass, this technique could also provide woodland biomass estimates over large areas. 

Further, an important application of global remote sensing is the estimation of ecosystem pro- 
ductivity using spectral greenness measures from the AVHRR sensor (Justice et al. 1985, Tucker et 
al. 1985a, Tucker et al. 1985b). One problem with this approach is that the relationship between the 
spectral index and green biomass is affected by woody cover (and other factors such as soil back- 
ground and atmosphere; Hiernaux and Justice 1986, Holben and Fraser 1984). Our model could help 
improve these methods by providing tree density estimates within vegetation strata, for adjusting the 
greenness index/biomass relationship. 

Our method can be used as part of a multi-stage inventory to directly estimate the size and den- 

2. BACKGROUND 
Plant canopy modeling provides a way of understanding the reflectance of a vegetated surface 

by building a functional model of reflectance based on the biophysical, optical, and spatial properties 
of the scene elements (plants or plant parts). If a reflectance model can be inverted the biophysical 
properties of the plant stand can be inferred from spectral reflectance measurements. The simple 
Li-Strahler model uses covariance statistics from estimated mixtures of scene components across pix- 
els for inversion, to predict average tree size and density in a stand. This model is discussed in great 
detail in Li and Strahler (1985) and Li (1983) and will only be described briefly here. The assump 
tions of the model are as follows: 
- 
- 

a tree crown is a simple geometric form, in this case a hemisphere on a stick (Fig. 1). 
tree counts vary from pixel to pixel as a Poisson function with a fixed density (e. g. - the spa- 
tial pattern is random at the scale of sensor resolution) 
the size distribution function of trees is known, so that C,,, the coefficient of variation of 
squared crown radius, can be determined for the stand. 
the tree crown and its associated shadow have a spectral signature which is distinct from that of 
thc understory (background). 

- 

- 

The reflectance of a pixel is modeled as a linear combination of the signatures of scene components 
(tree crown, background, shadowed tree and background) weighted by their relative areas. Pixels 
from an area of homogeneous tree cover can be taken as replicate measures of reflectance. Interpixel 
variance comes from variance in the number of trees among pixels and variation in the size of trees 
within and between pixels (if chance overlapping of trees and shadows is ignored). 

From the reflectance values the parameter m ( = NR 2, can be calculated, where N is the aver- 
age tree density, and R the average squared crown radius. Note that m ?r is equal to the proportion 
of woody cover in the stand. If N and R 
stand) then the expression for mean and variance of two independent products will apply, and mean 
size and density can be separated using the mean and variance of stand reflectance. 

The model also includes a geometric. factor, r, which is defined such that m r is the proportion 
of a pixel covered by tree crown and shadow. r can be calculated from the tree-shape geometry and 
the sun angle. The reflectance signatures of the model are: 
G Reflectance vector for a unit area of illuminated background (constant). 
C Reflectance of a unit area of illuminated crown (constant). 
2 Reflectance of a unit area of shadowed background (constant). 
T Reflectance of a unit area of shadowed crown (constant). 
S Reflectance of a pixel. Variable; depends on number and size of trees in pixei. 
V ( S )  Variance in reflectance of all pixels in a stand. 

are uncorrelated (a reasonable assumption is a sparse 

The signature of pixel i in band j is then modeled as 
Sij = G j  .Kg + (l-Kg ).( Cj 'If, + Z j  .ICz + Tj .Ift ) . 
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where 

I(9 Proportion of pixel not covered by crown or shadow. 
I(, Proportion of area covered by crown and shadow that is in illuminated crown. 
I<, Proportion of covered area in shadowed crown. 
Ii, Proportion of covered area in shadowed background. 
Because K,  , I(, , and Kt sum to one (by definition), the espression (Cj .Kc + Zj .I<z + Ti .K1 ) 
represents a point in multispectral space lying within a triangle with vertices at C , 2 ,  and T (see 
Figure 1). This point is Xo ; the average reflectance of a tree and its associated shadow. When m 
varies, S will vary along a straight line connecting points G and X o .  

The area of a pixel which is not background (1 - Kg ) was previously defined as m r. So, 
Kg = 1 - m r. Therefore, dropping the subscripts, (1) can be written 

S = G ( l - m r ) + X o m r  

and rearranging, we have 

From (2 )  we can derive the variance of m : 

In the multiband case, m should be the same if determined from any band. However, variance 
in the signatures and stand parameters will cause m to vary, and thus m can be taken as a 
weighted average. Because (G - X,) is in the denominator, sensitivity to variance and noise in S , 
G and X ,  will be reduced when spectral contrast between trees and background is high. 

ance of independent products, and the following expressions apply: 
If size and density are independent, then the mean and variance of m are the mean and vari- 

M = E ( n R 2 )  = E (n) . E ( R  2, = N R 2 ,  

and 
V ( m )  = V(, tR2)  = (R2)2 V ( n )  + N 2 V ( R 2 )  + V ( n ) V ( R 2 ) .  (5) 

V ( n ) =  N . (6) 

v ( R ' )  = V ( f ' ) / n  v ( r 2 ) / N  = cR2(J??(f2))2/N (7) 

Becausc n is a Poisson function, 

Further, 

because CR2 = V ( r 2 ) / ( E  ( r2 ) )2 .  Substituting ( 6 )  and (7) into (5), 

V ( m  ) ( N  + C R ~ N  + c,?)(R*)~ = (M + C R ~ M  + cR?R ' )R~ .  (8) 

Solving for R2, we obtain: 

Applying the approximation fi 1 + x/2, we obtain 
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Finally, substituting (2) and (3), the expressions for mean and variance of m , into (IO), R2 can be 
found from the reflectance values of a pixel in a stand, and the N can be found using (4). 

3. STUDY SITES IN MALI 
Salielian test sites in the Gourma region of Mali were chosen from among those being monitored 

by ILCA/Mali (The International Livestock Centre for Africa) in collaboration with the GIMMS Pro- 
ject (Global Inventory, Monitoring and Modeling System; National Aeronautics and Space Adminis- 
tration, Goddard Space Flight Center). Two sites were used for the initial test of the model, ILCA 
Sites 15 and 20. Site 15 is located in an Acacia nilotica woodland (approximately 31 percent cover), 
011 an alluvial plain of poorly drained vertisols. Site 20 is located in an Acacia seyaf woodland 
(approximately 58 percent cover), also on an  alluvial plain of vertisols that is inundated during the 
rainy season, but more freely drained that Site 15 (Hiernaux e t  01. 1984). 

The Sudanian test sites are located in the Region of Se'gou. The crop/woodland type of vegeta- 
tion is formed when crops are grown under a woodland of useful trees which are preserved when land 
is cleared. Sites 1 and 2 are dominated by Vitellaria paradoza (called shea, karite', or shi), and Sites 
3, 4N and 4s are dominated by Acacia albida (balanzan). All sites are located in the house fields 
(cultivated areas near the village where shrubs and weeds are cleared regularly) and cover range from 
13 to 25 percent. 

4. METHODS 
A bemispherical shape was initially chosen to test the model in savanna, based on field recon- 

naissance. Tree height (H) and crown diameter (= 2r ) were measured for thirty to one hundred 
trees in each site, and average h (see Fig. 1) was calculated from H - R for the stand. The ratio 
/ I  / R  was used to calculate r from the geometry of the hemisphere. Size distribution was examined 
by inspecting histograms of tree size (expressed both as crown size and height) for all sites. The 
model parameter cR2 was calculated from sample data for the sites. Spatial pattern was established 
by mapping point patterns of 200-900 trees from low-altitude aerial photographs in sample quadrats 
within the test sites, and analyzing using quadrat analysis (Li and Strahler 1981, Franklin et al. 
1085), and second-order analysis of inter-tree distances (Franklin and Getis 1985). 

was chosen to enhance the contrast between trees (still green for most species) and understory (a dry 
herbaceous layer, or bare soil). The TM scene for the Gourma sites was acquired 9 September 1984 
at the end of a very bad growing season in the Sahel. The scene for the Se'gou sites dates from 17 
November 1984, after the harvest, so the fields beneath the canopy have been cleared. The mean 
and variance of reflectance (S and V (S )) were computed for each of the test sites. Signatures for 
background and canopy (G and X , )  were computed from small training areas in the image, using 
aerial photographs as a guide. Areas of no tree cover in or near sites were used to estimate G , and 
pixels with high tree cover were used to estimate Xo.  

The model was tested by inputting the stand parameters (r and cR2) and the spectral parame- 
ters (G , X,,  S and V ( S ) ) ,  predicting R 2  and N for each site, and comparing to actual R and N 
from field measurements. Observed and predicted values were compared by simple regression. The 
niodel was tested using TM Bands 3 (.G3-.(39 pm) and 7 (2.08-2.35 pm). Band 3 was chosen because 
in  our experience red reflectance is strongly related to tree cover (Logan and Strahler 1982, Franklin 
1086), and Band 7 had the highest variance in the sites, and has also been shown to be related to 
tree cover (Horler and Ahern 198G). 

Landsat Thematic Mapper (TM) data were used to test this model. Early dry semon imagecy 

5 .  RESULTS 
Table I shows the stand parameters h / R  , R , CR, and r for all sites. Values for H / R  range 

from 1 to 1.6 for Se'gou sites (taller trees, narrower crowns) and 0.5 to 0.G for Gourma sites (shorter 
trees, wider crowns). CR, values range from 0.21 to 0.89. 
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Tr2e size distributions for all sample populations were slightly to extremely right-skewed, and a 
logtransform produced a normal-looking distribution (Fig. 3). Thus, if field measurements were not 
available, the assumption of a lognormal size distribution is supported for these sites, and the for- 
mula for C,, for a lognormal distribution could be used. However, for these sites C,Z was calculated 
directly from sample data. 

~ ~~ ~~ - - 
15 A. nilotica(*) 56 .50 3.63 .6850 4.37 
20 A. seyal(*) 87 .62 3.23 .4401 4.55 

1 V. paradozo 33 1.22 3.62 .6166 6.73 
2 V. paradoza 32 1.06 3.88 .2560 6.44 
3 A. albida 32 1.50 4.44 -2672 7.11 

4N A. albida 14 1.17 6.57 .2125 6.63 
4s A. albida 16 1.64 4.66 .3816 7.19 , 

Table I. Stand Parameters 

14.04 5.04 
10.62 3.78 
13.86 11.43 
16.02 16.02 
18.18 1G.74 
45.63 23.13 
24.21 8.82 

Site Soecies n h l R  R C-2 r 1 

6.42 24.66 .31 .44 70 
15.57 34.92 .58 .46 79 
3.73 4.22 .I8 .I7 94 
2.48 3.97 .I4 22 64 
3.58 4.52 .23 .26 88 
1.59 3.28 .25 .26 96 
1.55 5.50 .13 .I7 76 

Fig. 4 shows the point locations and results of second order analysis for one of the sites. In all 
sites there is generally an inhibition distance of five to ten meters, below which the probability of 
finding two trees is very low, but at relevant sensor resolution (20 to 50 m) a Poisson model is ade- 
quate. This is supported by the quadrat analysis. At larger distances (50 to 100 m) a Poisson model 
still fits in many of the sites, including the sparser stands (Site 2) at densities where the Poisson 
model broke down in our earlier studies (Franklin e t  al. 1985). 

The results of the model test are shown in Table II which includes the model parameters and 
observed and predicted values values of R and N . The model consistently overestimates density 
and underestimates crown size, but predicted cover values are very close to actual cover based on 
field measurements, and there is good correlation between observed and predicted values of N and 
R (Table IV). Table I11 shows the rank order of observed and predicted R 2, N and Cover for TM 
Bands 3 and 7. Rank order is preserved in most cases. The model easily separates big crown, low 
density stands from large crown, high density stands. 

Table 11. Results Canopy Model Inversion TM Band 3 (.63-.69pm ) 
. .  

Site G J  G,, Xoob Xotr S V ( S )  Area(ha 
15 149.9 137.6 108.5 108.2 124.7 43.4 71.6 
20 151.9 141.0 102.2 114.8 119.1 44.4 73.0 
1 103.1 102.4 68.7 72.1 90.7 59.4 51.8 
2 98.2 95.4 68.7 58.1 84.8 56.9 92.5 
3 98.2 96.9 79.0 77.0 86.7 37.1 86.2 

4N 110.5 106.4 83.0 86.8 95.9 83.3 25.2 
4s 108.6 104.0 83.0 86.4 98.7 24.6 18.1 

Using Xo and G from 4N, 
4s 106.4 86.8 98.7 24.6 
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Table III. Rank Order of Predicted and Observed Size, Density and Cover 

Band 3 Band 7 
R2 N 

Pred Obs Pred Obs 
20 20 20 20 
15 1 15 1 
4s 15 1 15 
1 2 4s  2 
2 3 3 3 
3 4s  4N 4s 

4N 4N 2 4N 

Cover I 
Pred Obs Pred Obs 

4N 4s 2 4s 
2 4N 4s 4N 
1 2 4N 2 
3 3 3 3 

4 s  1 1 1 
15 15 15 15 
20 20 20 20 

Pred Obs 
4s  4s 
1 2 
2 1 
3 3 

4N 4N 
15 15 
20 20 

We noted that it is difficult to accurately characterize component signatures using training data. 
Using our training technique, the observed G was too bright, and observed Xo too dark in most 
cases. Overestimating G caused the individual predictions of N to be too high, and R '? too low. 
Therefore, our next approach was to predict the component signatures (G and X,) using the model, 
Imed c n  observed N and R for the sites. Table I1 shows predicted values of G and X o .  In all 
cases there is a good correlation between observed and predicted spectral variables (G and X,); see 
Table IV. To see if signature extension is possible, predicted values of G and X ,  from Site 4N were 
used to predict N and R in Site 4s (same type of woodland, different size and density). The bob 
tom entry in Table 11 show that the predicted values match observed more closely when component 
signatures are predicted from the model, and then extended in this way. 

Table IV. Regression Equations and r for Observed and Predicted Values 

Pred Obs 
4s 4s  

2 2 
1 1 
3 3 

4N 4N 
15 15 
20 20 

Variable Band Regression Equation r 2  
R2 3 Obs = 1.270(Pred) + 5.013 .56 

7 Obs = 1.781(Pred) - 0.560 .68 
N 3 Obs = 0.358(Pred) + 0.835 .86 

7 Obs = 0.459(Pred) + 0.625 .95 
Cover 3 Obs = 1.117(Pred) + 0.056 .75 

7 Obs = 1.033(Pred) + 0.309 .75 
G 3 Obs = 0.741(Pred) + 20.396 .88 
x n  3 Obs = 1.251(Pred + 23.330 .99 

. 

We also ran the model holding the stand parameters h / R  and C,, constant .ar all stands (we 
chose intermediate values from among those rnewured in the field) and predicted R 
the sensitivity of the model to these parameters. Table V shows the results for constant values of 
/ I .  / R  and CR?. There is little change in the predicted values of R' and N ,  no systematic error 
caused by holding the stand variables constant, and no change in the rank order of observed and 
predicted values. 

and N ,  to test 
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Table V. Model Results for Constant h / R  (=1) and CR4=.5) 
(Band 3; G , X o ,  S , and V (S ) same as in Table 3) 

Site 

4N 

R20b$ 2nrcd 
14.04 4.86 
10.62 3.15 
13.86 13.14 
16.02 13.59 
18.18 15.93 
45.63 19.G3 
24.21 9.18 

Nabs N o r e d  
6.42 21.95 

15.57 36.35 
3.73 3.91 
2.48 4.74 
3.58 5.35 
1.59 3.84 
1.55 5.98 

c o b s  Cored % 
.31 .37 84 
.58 .40 69 
.18 -18 100 
.14 .22 64 
2 3  .30 77 
2 5  2 6  96 
.13 .19 68 

6. DISCUSSION 
Using the Li-Strahler simple variance-dependent canopy model, characterizing tree geometry, 

spatial and size distribution from field data, and deriving spectral data from TM imagery, we were 
able to predict tree cover in test sites with reasonable accuracy (80 to 100 percent using TM Band 7, 
60 to 100 percent using TM Band 3). The model easily separates low from high density stands; rank 
order of observed and predicted cover values are similar. 

The model is relatively insensitive to  the stand parameters r (which predicts the amount of tree 
crown and associated shadow from the geometry of the trees), and CR? (the variance in tree size) as 
shown hy the results using a standard value for h / R  (from which r is calculated) and CRt. This 
iiiean that reasonable values for h / R  and c R 2  can be chosen for a species or woodland type, and 
estendcd over large areas. 

In this test, the model underestimates crown size and overestimates density in all sites. The 
correlations between observed and predicted values shows that density is predicted better that crown 
size. The problem appears to be that our technique for choosing component signatures overestimates 
the brightness of G , to which the model is very sensitive, and in most cases underestimates the 
brightness of Xw However, regressions of observed and predicted G and X, values show very good 
correlation ( r  2> .85), so it may be possible to adjust values of G and X, from training data by sim- 
ple regression. Another alternative is to predict G and X o  using the model itself in test sites where 
size and density are known, and then extrapolate these signatures to other areas. This was tested in 
Sites 4N and 4S, with greatly improved predicted values of N and R ’. 

7. CONCLUSIONS 
The Li-Strahler canopy model provides a physically-based model which explains the major 

characteristics of reflectance, and variance in reflectance, in a sparsely wooded landscape in terms of 
\ariaticons in tree size and density, and shadowing geometry. This gives a functional explanation for 
the observed empirical relationship between reflectance (brightness) and tree cover. 

Therefore, it needs to be tested further in the following ways. Sites need to be divided into “train” 
mid “test” portions, to see if signature and parameter extension is possible. More sites, over a 
greater range of crown size and density, need to be included. The accuracy of predicted N and R 
should be improved by averaging predictions from uncorrelated spectral bands, principal components, 
01’ multi-date imageiy, and this must be tested. Further, this technique is most cost-effective when 
nlkplied io the coaDest spatiai resoiution for which inter-pixel variance is sufficient to invert the 
iiiodel. This can be tested with lower resolution imagery, or by resampling TM to simulate lower 
resolution imagery. Finally, our field work this year has convinced us that an ellipsoid is a better 
*Iiape model than a hemisphere in this landscape, and in future work, r will be calculated accord- 
ingly. 

As a technique, this model is most useful when it can be parameterized and run over large areas. 
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Figure 1. Tree form geometry. 
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Figure 2. Idealized plot of model in multispectral space. 
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Figure 3. Size distribution of trees and Q-Q plot of log transform for Site 15. 
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Figure 4. Point locations and results of second order analysis for Site 2. 

-60 - 

. - .- . . . . . . . . . . . .  - . . . . .  - .. . I .... 


